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Introduction

Thrombo-inflammation is a commonly used term to de-
scribe the complex interplay between blood coagulation
and inflammation,1 in relation to the pathophysiology of
cardiovascular diseases (CVD), including atherosclerosis
and acute atherothrombotic complications like myocardi-
al infarction and ischemic stroke, as well as venous
thromboembolic disease.2 The third Maastricht Consen-
sus Conference on Thrombosis was held to bring together
basic, translational, and clinical scientists to intensely
discuss with the audience mechanisms and consequences
of thrombo-inflammation in the context of CVD diagnos-
tics and management. This article summarizes current
evidence and research perspectives derived from presen-
tations and discussions among faculty and audience.
Speakers and students worked together on the elements
that comprise this document, which is organized in sec-
tions representing the mechanistic elements covering the
origin, mechanisms, and consequences of thrombo-in-
flammation in relation to CVD.

Theme 1: Challenges of the Endothelial Cell Barrier

The Role of Air Pollution
Ischemic CVDs downstream from atherosclerosis (myocar-
dial infarction, nonembolic ischemic stroke, and peripheral
artery disease) are the consequences of a complex interplay
of multiple risk factors.3One of these is air pollution, a major
environmental risk factor. Of 56 million deaths per year
attributable to CVD (33% of total mortality), and 6.5 million
of those are due to air pollution. Most recent estimates
exceed previous numbers in showing an excess of 800,000
deaths/year in Europe due to air pollution: 40% related to
ischemic heart disease and 20% due to ischemic stroke.4,5

One of the key triggers is fine particulate matter with a
diameter below 2.5 μm (PM2.5), which presents in natural
and anthropogenic sources including fossil fuel and biomass
combustion, industry, agriculture, wildfires, and wind-
blown dust. PM2.5 behaves as a sponge that adsorbs an array
of toxic substances of different compositions, thereby induc-
ing inflammation and vascular (endothelial) dysfunction
(►Fig. 1) The latter involves potential endothelin-1 related
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Abstract Thrombo-inflammation describes the complex interplay between blood coagulation and
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topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-
inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3)
procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating
atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial
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mechanisms,6 oxidative stress, aggravated by hypercoagula-
bility, and reduced fibrinolytic activity in blood.7–9 Air
pollutants containing PM2.5 penetrate the lungs and trans-
locate into the circulation, where they induce increased
oxidative stress through mechanisms that are strikingly
similar to those underlying vascular dysfunction in diabetes
and hypertension. In addition, thrombogenic pathways are
engaged through direct (contact activation) as well as tissue
factor linked mechanisms.10

Endothelial Heterogeneity
In the circulation, vascular endothelial cells (ECs) contribute
to the host defense against inflammatory and toxic substan-
ces like particulate matter. ECs are highly heterogeneous in
structure and function, related to the specific vascular bed
they reside in.11 However, data on tissue-specific in vivo
endothelial gene expression contributing to this heteroge-
neity, as well as their response to inflammatory triggers, has
been relatively limited that is mainly due to the small
fraction of ECs and interspersed distribution within tis-

sues.11 Combining translating ribosome affinity purification
with high-throughput RNA sequencing analysis allows for
the isolation and transcriptional profiling of ECs frommulti-
ple tissues captured in their in vivo microenvironment.12,13

These data demonstrate remarkable EC heterogeneity under
physiologic conditions; in addition to vascular bed-specific
shifts in gene expression following lipopolysaccharide (LPS)
exposure, this induces a general procoagulant, antifibrino-
lytic shift of the endothelium with reduced levels of throm-
bomodulin (TM) and tissue factor pathway inhibitor, and an
upregulation in plasminogen activator inhibitor 1 (PAI-1)
expression. However, protein C receptor (EPCR) mRNA levels
show tissue-specific EC reactivity as levels in brain, heart,
and kidney are lower in LPS-treated animals than in controls,
while they are increased in liver and lung,14 which could
explain the tissue-specific susceptibility to increased vascu-
lar leakage in LPS-treated EPCR deficient mice.15 This in vivo
mouse model has the marked advantage of evaluating diver-
sity in EC expression profiles in situ in a high-throughput
fashion under different physiologic and pathologic

Fig. 1 Schematic representation of the potential areas for investigation for theme 1. Endothelial cell heterogeneity might contribute to
initiation and progression of atherothrombotic disease providing potential new biomarkers and new targets for drug development. Particulate
matter induces cell destructive effects such as inflammation, oxidative stress, and hypercoagulability, thereby linking endothelial cell
heterogeneity to downstream thrombin effects. Inserts: schematic of the consequences of thrombin binding toTM. In the top panel, thrombin is
generated from its inactive precursor, prothrombin, by the common pathway. Thrombin cleaves its canonical substrates such as protease-
activated receptors, fibrinogen, and other proenzymes in the coagulation cascade, for example, FXI and Factor XIII, generating FXIa and FXIIIa,
respectively. These reactions result in a clot containing both activated platelets and fibrin. Thrombin also cleaves proteins from outside the
coagulation cascade such as osteopontin. Prochemerin is activated by FXIa. The bottom panel depicts the changes ensuing from thrombin
binding to TM. Upon formation of the thrombin/TM complex the rates at which the canonical substrates are cleaved are greatly reduced while
activation of protein C and procarboxypeptidase B are greatly enhanced. This leads to a change in substrate specificity of approximately 1 million
fold. FXI, factor XI; TM, thrombomodulin.

Thrombosis and Haemostasis Vol. 120 No. 4/2020

Thrombo-Inflammation in Cardiovascular Disease d’Alessandro et al.540

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ite

it 
M

aa
st

ric
ht

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



conditions. Based on these data, it is possible to identify
vascular bed-specific markers, as well as potentially identi-
fying new biomarkers for disease progression and novel
targets for therapeutic intervention.

Noncanonical Substrates Downstream from Thrombin
In addition to substrates directly leading to clot formation
such as fibrinogen and the protease-activated receptors,
thrombin’s activity plays a central role in both short term
as well as chronic outcomes following activation of the
coagulation cascade. This is because other thrombin sub-
strates such as the matricellular protein, osteopontin (OPN),
and protein C (PC) modulate effectors for other indications
such as inflammation and diabetes. One critical component
in determining the outcome of the generation of thrombin is
the presence of its cofactor, TM.When thrombin binds toTM,
its activity is altered from pro-coagulant and pro-inflamma-
tory to being anticoagulant and antiinflammatory.

TM is a constitutively expressed receptor on vascular
ECs as well as some leukocytes that has a high affinity for
thrombin.16 Binding of thrombin to TM enhances activa-
tion of PC to activated protein C (aPC) which inactivates
coagulation factors (F) Va and VIIIa. The thrombin-TM
complex also activates the plasma basic carboxypepti-
dase, pro-carboxypeptidase B2 (proCPB2; thrombin-acti-
vatable fibrinolysis inhibitor [TAFI]). The activated
enzyme, CPB2 (TAFIa), stabilizes fibrin clots by inhibiting
plasmin generation and reducing fibrinolysis.17–20 Apart
from CPB2’s role in inhibiting fibrinolysis, it is also anti-
inflammatory as it inactivates pro-inflammatory media-
tors such as bradykinin, anaphylatoxins C3a and C5a, and
thrombin-cleaved OPN.19,21–23 Thus, CPB2 and aPC have
complementary roles in maintaining homeostasis as a
result of their activation as both are antiinflammatory
via different mechanisms while aPC inhibits further clot
formation and CPB2 protects the clot from early dissolu-
tion, thereby preventing rebleeds.

CPB2�/� mice have been used to study inflammatory
diseases such as lung diseases including allergic bronchial
asthma, chronic thromboembolic pulmonary hypertension
(CTEPH) and alveolitis, but also autoimmune arthritis, sepsis,
etc.17,22,24–26 Outcomes in CPB2�/� mice can improve or
worsen the disease depending on the particular model being
studied; CPB2�/�micehadworse C5a-induced alveolitis than
wild type, but in a polymicrobial sepsis model, CPB2�/�mice
had improved survival, less lung edema, and less liver and
kidney damage compared with wild type.20 In the alveolitis
model lack of CPB2 allowed unregulated C5a activity,22

whereas in the polymicrobial sepsis model the key substrate
leading to the phenotype of protection in the CPB2�/� mice
was C3a despite the presence of C5a in exacerbating the
disease.20

OPN has pleiotropic functions involved in both cell–cell
and cell–matrix interactions while it can also circulate as a
pro-inflammatory cytokine.27 OPN is expressed by many
inflammatory cells (e.g., T-cells and macrophages), and its
expression is enhanced during inflammation or stress. OPN
can interact with many different cells via integrin receptors

resulting in, among others, leukocyte cell survival, differen-
tiation, and mobilization but also changes in adhesion,
migration, trafficking, etc.28

OPN contains a conserved thrombin cleavage site that
generates OPN-R (the N-terminal fragment) and CTF (the C-
terminal fragment) which have new activities not present in
full-length OPN. OPN-R reveals a cryptic integrin binding
site, enhancing cellular adhesion and survival.19,28 Following
its formation, the C-terminal of OPN-R is a substrate for CPB2
that removes the novel integrin binding site. Jurkat cells, an
immortalized human T cell line have enhanced binding to
OPN-R which was abolished by CPB2 treatment,19 showing
that cleavage of the newly exposed integrin binding site at
the C-terminal of OPN-R is abolished by CPB2 treatment,
removing its pro-inflammatory function.

Chemerin isanadipokineandchemoattractant thatcirculates
in the blood in its inactive prochemerin form.29 Its activation
proceeds via proteolytic cleavages by enzymes from the coagu-
lation and fibrinolytic cascades of the C-terminus, resulting in
various chemerin forms with distinct C-terminal sequences
which possess different levels of activity. The relatively low
bioactivity of the chemerin form, chem158K, generated by
FXIa- or plasmin- cleavage of prochemerin is enhanced by
subsequent CPB2 proteolysis to the fully active form,
chem157S.29,30 This is the only known substrate of CPB2 that
is activated by CPB2 cleavage rather than inactivated.29,31 Acti-
vation of both of the proteases responsible for generation of
chem158K(FXIaandplasmin) isdownstreamfromgenerationof
thrombin linking the coagulation and fibrinolytic systems to
modulation of endocrine disorders.

All of the thrombin substrates considered here can affect
both the immediate outcome of a thrombotic event but also
the long-term vascular consequences. Activity of CPB2 and
aPC directly affect the size and length of time that a clot will
be present. Their anti-inflammatory effects will modulate
the local and systemic inflammatory environment. The
activity of thrombin-cleaved OPN controls infiltration by
circulating leukocytes into the vessel wall while active
chemerin may exacerbate obesity and diabetes.

Extreme Endothelial Cell Challenge: The Case of
Thrombotic Thrombocytopenic Purpura
Auto-immune mediated thrombotic thrombocytopenic pur-
pura (iTTP) and congenital thrombotic thrombocytopenic
purpura (cTTP) are rare diseases with a historical mortality
of >90%. Over the past two decades much knowledge has
been gained regarding the pathophysiology of TTP,32,33 but
already in the 1980s the empirical introduction of plasma
exchange (PEX) and fresh frozen plasma (FFP) replacement
had resulted in a spectacular improvement in survival of
80%.34 Predisposing factors for iTTP include female sex,
African-American race, and certain HLA-DR types.32 Both
iTTP and cTTPmay require a “second hit” besides acquired or
congenital severe deficiency of ADAMTS13 activity, for ex-
ample, an (often mild) prodromal infection or, especially for
cTTP, pregnancy.35 ADAMTS13 is a protease that cleaves
ultralarge forms of von Willebrand factor, thereby control-
ling its prohemostatic activity; its deficiency triggers
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extensive and poorly controlled VWF-platelet vessel wall
interactions. TTP is associated with significant comorbidity,
caused by microthrombi leading to ischemic organ damage,
mainly of the brain and heart. Long-term sequelae include
neurocognitive disturbances, depression, arterial hyperten-
sion, and a significantly increased mortality in survivors of
iTTP attacks.36,37

Differential diagnosis of acute TTP must exclude other
forms of thrombotic microangiopathies (TMA), especially
atypical hemolytic uremic syndrome (HUS)33 which is es-
sential for appropriate management. Prompt diagnosis of
acute iTTP or cTTP based on severely deficient ADAMTS13
activity (<10%, and most often <3%), with (iTTP) or without
(cTTP) ADAMTS13 inhibitor, is important considering new
treatment strategies becoming available, such as caplacizu-
mab or rhADAMTS13. The recent demonstration of an open
conformation of ADAMTS13 specifically in all patients with
acute iTTP and approximately 25% of those in remission
having survived acute iTTP, but in none with a diagnosis of
sepsis or HUS suggests that such open conformation, demon-
strable using a monoclonal antibody against a cryptic epi-
tope in the spacer domain of ADAMTS13, may become a
specific biomarker for iTTP in the future.38

The cornerstone of treatment of acute iTTP still consists of
therapeutic PEX with FFP replacement and corticosteroids,
whereas an acute episode of cTTP may be treated by FFP.39

The nanobody caplacizumab, blocking the VWFA1 domain—
platelet glycoprotein (Gp) Ib-IX-V interaction, given upfront
in acute iTTP by i.v. and then daily s.c. injection in addition to
daily PEX, FFP replacement and corticosteroids, leads to
faster resolution of thrombocytopenia, less exacerbation,
and hopefully less organ damage by preventing the forma-
tion of microthrombi.40 It is of importance to ascertain
recovery of ADAMTS13 activity before stopping caplacizu-
mab to avoid TTP exacerbation or recurrence. Bleeding risk is
increased under caplacizumab, the VWF-platelet interaction
being completely inhibited, but so far, no serious bleeding
complications have been observed.40 Besides upfront treat-
ment with caplacizumab, aiming at immediately blocking
the pathologically enhanced VWF-platelet interaction, im-
munosuppression is mandatory to eliminate the pathogenic
anti-ADAMTS13 autoantibodies. In addition to corticoste-
roids, the anti-CD20 antibody rituximab is increasingly used
for this purpose even though there is still discussionwhether
it should be reserved for therapy-resistant patients, given
upfront to any acute iTTP patient, and/or preemptively in
clinically asymptomatic survivors of acute iTTP with recur-
ring severe acquired ADAMTS13 deficiency.41

The availability of rhADAMTS13, which has been success-
fully tested in a phase 1 pharmacokinetics and safety study in
15 cTTP patients, will probably facilitate standard prophy-
laxis and/or treatment for the rare patients with cTTP.42

Theme 1: Potential Areas for Investigation

• EC heterogeneity linked to (hallmarks of) disease initia-
tion and progression to identify biomarkers and new
targets for drug therapy; technical standardization of

gene expression profiling, including defining “healthy”
and “diseased” cells; collaborative approaches to process,
analyze, interpret, and follow-up high-throughput
datasets.

• Exploration of downstream products of the coagulation
cascade including, for example, the thrombin-cleavage
fragments of OPN or the different chemerin forms, as
potential biomarkers.

• Evaluate the potential of therapeutic strategies including
PC or aPC mutants with altered anticoagulant over anti-
inflammatory activities, as well as soluble TM and CPB2
inhibitors for treatment of acute stroke, myocardial in-
farction and venous thromboembolism.

• The value of chemerin receptor antagonists to modify the
course of diabetes and obesity in patients following a
thrombotic event.

• The role of ADAMTS13 and von Willebrand factor as
cardiovascular risk factors in epidemiologic studies.

Theme 2: Circulating Cells and Thrombo-
Inflammation: Platelets, Neutrophils, and Neutrophil
Extracellular Traps

New Mechanisms in Platelet-Mediated Thrombosis
The role of platelets in hemostasis and thrombosis is well
established, but the mechanisms through which platelet
surface GP’s interact with surrounding cells and proteins
in the vasculature require further elucidation (►Fig. 2). The
immunoreceptor-tyrosine-based-activation (ITAM)-con-
taining receptor receptor glycoprotein VI (GPVI) has been
shown to directly interact with collagen to activate down-
stream SH2 domain-containing tyrosine kinase, Syk, thereby
initiating platelet activation. However, more recently, GPVI�/

� mice demonstrated a delay in vascular occlusion in re-
sponse to ferric chloride (FeCl3), but not in initiation of
thrombus formation, with no fibrillar collagen found in the
formed thrombus.43 These unexpected results lead to spec-
ulation on a second ligand for GPVI in the growing thrombus
with the proposal that thiswasfibrin. The interaction of GPVI
with polymerized fibrin amplifies thrombin generation and
platelet recruitment.44 Further, platelet spreading on fibrin
is abolished in human platelets deficient in GPVI due to a
homozygous insertion in the extracellular domains which
prevents membrane expression.45 This confirms that fibrin
activates platelets through the GPVI-Fc receptor-γ-chain
complex. Further research is required to establish whether
the binding sites for collagen and fibrin on GPVI are shared or
distinct.

Fibrin binds selectively to monomeric GPVI, determined
by surface plasmon resonance spectroscopy, in contrast to
collagen which binds to dimeric GPVI.45 On the other hand,
fibrin can bind to dimeric GPVI.46 The explanation for these
opposing results may be related to sequence differences in
recombinant GPVI. The availability of a large number of
antibodies and related reagents (e.g., nanobodies) to GPVI
is utilized to test if they block the interaction with collagen
and fibrin. The use of aspirin and P2Y12 inhibitors in throm-
bosis are limited because a proportion of patients have
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further thrombotic episodes and both drugs increase the risk
of bleeding. GPVI is an attractive target for a new class of
antiplatelet agents as it appears to play a minor role in
hemostasis. The challenge, however, is the high cost of
clinical trials to test this general hypothesis. The trial design
could be problematic as the patients may have to be taking
a second antiplatelet agent, leading to an increase in bleed-
ing. A smaller trial in patient subgroups with a high risk of
thrombosis would have a reduced cost and also demonstrate
efficacy in blocking GPVI in human, thereby translating
results from both in vitro models and mouse models that
mimic the microfluidics and nanofabrication in the vascula-
ture. Revacept is a recombinant dimeric GPVI which com-
petes with platelet GPVI for binding to collagen. Revacept is a
weaker inhibitor of collagen signaling than the humanized
blocking Fab to GPVI, ACT017, which binds directly to the Ig
receptor. In addition, ACT017 blocks activation of platelets by
fibrin. Revacept has completed two phase II clinical trials and
ACT017 is undergoing phase 2.47

Regulators of Platelet Adhesion and Inflammation
Platelet adhesion to areas of vascular injury depends on the
cell’s ability to rapidly convert its integrin receptors from a
low to a high affinity state. Platelets express twomain classes
of agonist receptors, which sense changes in the environ-
ment and thus initiate intracellular signaling required for
integrin activation48: G protein-coupled receptors (GPCRs)

and immunoreceptor tyrosine-based activation motif
(ITAM)-containing receptors. GPCRs have three important
advantages over ITAM receptors as initiators of platelet
activation during hemostatic plug formation (1): they are
activated by soluble agonists, that is, they can mediate
cellular activation in the core of the hemostatic plug where
there is no direct contact with the extracellular matrix (2);
their switch-like activation mechanism allows for a near-
immediate generation of intracellular second messengers;
and (3) they facilitate a graded response as key agonists like
thrombin and ADP activate cells via two distinct receptors,
one that initiates signaling and another that is required for
the signal to be sustained. Most GPCRs directly activate
phospholipase C, a key enzyme in the formation of
the second messengers, diacylglycerol and calcium (Ca2þ).
Downstream of second messengers, the small GTPase RAP1
has a crucial role in the near-immediate activation of integrin
receptors. Similar to the GPCR system, RAP1 activity is
controlled by GDP for GTP exchange, mediated in a switch-
like fashion by guanine nucleotide exchange factors (GEFs)
and GTPase-activating proteins (GAPs).49Only small changes
in the cytosolic Ca2þ concentration are required to trigger the
activation of CalDAG-GEFI,50 a major GEF for RAP1 in plate-
lets. However, this signal will not be sustained unless inhibi-
tory signaling by the GAP, RASA3, is inhibited the latter
regulated downstream of the platelet ADP receptor, P2Y12

and consequent PI3 kinase-mediated generation of

Fig. 2 Schematic representation of the potential areas for investigation for theme 2. Platelet signaling differs between individuals due to
variability in GPCR signaling. One of the unexplored areas is the monomeric versus dimeric signaling of fibrinogen and collagen on glycoprotein
VI Platelet integrin activation from low to high affinity depends on agonist receptor activation of mainly two classes: GPCRs (including PAR1,
PAR4, P2Y1, and P2Y12) and immunoreceptor tyrosine-based activation motif-containing receptors. GPCR signaling has three main advantages:
soluble agonists, switch-like mechanisms, and graded receptors. Crucial on the GPCR-signaling is the downstream activation of the GTPase
RAP1, triggering immediate activation of integrin receptors through activation of talin. Platelets and neutrophils interact with each other,
thereby enhancing thrombotic mechanisms. Upon activation, neutrophils release human neutrophil peptide 1, interacting with platelet-derived
CCL5 into a heteromer, which enhances monocyte recruitment. In a second mechanism, neutrophils recognize CCL5 resulting in the release of
cathepsin G, an interesting target to diminish adherence of leukocytes to large arteries. Neutrophils release extracellular traps consisting of
genomic DNA and nucleosome proteins of which histones H3 and H4 are considered most toxic. GPCR, G-protein coupled receptor; PAR,
protease-activated receptor.
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phosphatidylinositol3–5-trisphosphate (PIP3).51 Once acti-
vated, RAP1 communicates with TALIN, a direct interactor
and activator of integrin receptors. In contrast to cells of the
innate and adaptive immune system, RAP1 in platelets does
not rely on an adapter protein like RIAM1 (RAP1-GTP inter-
acting molecule-1) for recruiting TALIN.52,53 A functionally
relevant direct interaction between RAP1 and TALIN has
recently been demonstrated,54–56 likely another adaptation
required for platelets to be able to rapidly adhere and
aggregate under high shear stress conditions. In summary,
the “G protein highway to integrin activation” is crucial for
classical hemostasis. Genetic disruption or pharmacological
intervention with individual components of this pathway
often cause severe bleeding. Other signaling systems (ITAM
receptors, kinases, etc) play a less important role during
hemostatic plug formation. However, these proteins may be
more important for other forms of hemostasis, such as
inflammatory hemostasis and vascular development, where
platelet aggregation under flow is not required. The relative
contribution of individual signaling pathways to pathologi-
cal thrombus formation in arterial and venous thrombosis
needs further investigation. Additional experimental studies
should also include more mechanistic studies on the RAP1-
TALIN interaction, other downstream effectors of RAP1 in
platelets, the contribution of RAP2 to platelet function, and
whether and howRAP1 regulatorswith lowexpression levels
affect platelet function.

Neutrophils and Atherosclerosis

Neutrophils in Early Stages of Atherosclerosis
In recent years, neutrophils have received recognition for
their role in chronic inflammation including atherosclero-
sis.57 Depletion of neutrophils during early stages of athero-
sclerosis reduced lesion sizes as well as the accumulation of
monocyte and macrophages, an effect partially driven by
neutrophil-derived chemotactic granule proteins.58,59 Neu-
trophils themselves are in part recruited to large arteries
through action of platelet-borne CCL5 which is deposited on
atherosclerotic endothelium. However, centered on CCL5,
neutrophils have been shown to engage in mechanisms that
form a detrimental alliance between neutrophils and plate-
lets and stimulate monocyte recruitment.60,61 In acute and
chronic inflammation, neutrophils and platelets, both of
which promote monocyte recruitment, are often activated
simultaneously. HNP1 (human neutrophil peptide 1) from
neutrophils forms heteromers with CCL5 derived from pla-
telets enhancing the recruitment of monocytes at the site of
inflammation. The recruitment of classical monocytes can be
inhibited by disturbing heteromers of neutrophil HNP1 and
platelet CCL5. These heteromers stimulate monocyte adhe-
sion through CCR5 ligation. Based on understanding the
structural features of HNP1-CCL5 heteromers, stable pep-
tides that disturbed pro-inflammatory HNP1-CCL5 interac-
tions were generated and successfully used to limit
monocyte recruitment.62 As a second mechanism, neutro-
phils recognizing CCL5were shown to deposit cathepsin G on
inflamed large arteries. Importantly, this mechanism was

restricted to large arteries and does not occur in postcapil-
lary venules. Mechanistically, cathepsin G is immobilized on
arterial endothelium where it activates leukocytes to firmly
adhere by engaging integrin clustering, a process of crucial
importance to achieve effective adherence under high-shear
flow. Therapeutic neutralization of cathepsin G specifically
abrogated arterial leukocyte adhesion without affecting
myeloid cell adhesion in the microcirculation of mice.63

Circadian Control of Arterial Myeloid Cell Adhesion
The clinical manifestation of CVD exhibits daily variation,
with an increased incidence in the early morning hours. This
coincides with circadian oscillations of glucocorticoids,
blood pressure, leukocyte counts, and other parameters
regulating inflammatory processes.64 Myeloid cell adhesion
in atherosclerotic regions is controlled in a circadian fashion.
During the day, a threefold amplitude in adherent myeloid
cells was seen.65 In the morning hours in mice, there was a
higher influx and adhesion of myeloid cells into the site of
injury. CCL2 concentration also varied throughout the day,
being higher during the morning and decreasing in the
evening. The circadian recruitment pattern differed between
macro- and microcirculation.65–67 In the microcirculation,
there was a lower adhesion in themorning than the evening,
while the opposite happened in the macrocirculation, where
the higher adhesion level was seen in the morning. Time
optimized inhibition of the CCL2-CCR2 axis reduced athero-
sclerosis with limited side effects. The advantage of this
method is the reduction of lesion size, with no impact on
microvascular recruitment or circulatingmyeloid cell counts.

Role of Neutrophils in Advanced Stages of Atherosclerosis
Clinical studies show a striking association between circulat-
ing neutrophil counts (in particular neutrophil:lymphocyte
ratio) and the incidence of acute coronary syndromes
(ACS).68,69 There were, however, few mechanistic studies on
the role of neutrophils in plaque destabilization or plaque
erosion. Neutrophils were found to release NETs at arterial
sites of disturbed flow.70,71 NETs in this location promote
erosion of ECs and subsequent cardiovascular complica-
tions.72,73 In the context of plaque destabilization, the number
of intimal neutrophils correlates with plaque instability.73

Mechanistically, activated smooth muscle cells (SMCs)
attracted neutrophils and induced release of NETs through
CCL7. NETs in close proximity to SMCs induce their death and
consequently accelerate plaque destabilization. The cytotoxic-
ity evoked by NETs is centered on histone H4, a highly cationic
nuclear protein found abundantly in NETs.74 The N-terminus
of histone H4, especially exhibits membrane activity, causing
membrane bending and ultimately leading to pore formation
and subsequent cell lysis. Antibody-assisted histone H4 neu-
tralization or charge inhibition by tailored cyclical peptides
could successfully lower plaque destabilization in mice.74

Nucleosomes, Neutrophil Extracellular Traps, DNAses,
and Vascular Injury
The evolutionary role of neutrophil activation in the form of
NETs is to scavenge and finally prevent spread of bacteria and
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fungi. Beyond infectious diseases, there is interest in NETs in
a variety of pathologies including thrombo-inflammation or
so called “immune-thrombosis”75.

Importantly, although NETosis implies that only neutro-
phils release extracellular traps, many other cells (e.g.,
monocytes and eosinophils) can undergo NETosis. Hence,
the name “extracellular traps” without specifying the cellu-
lar origin should be considered since it is difficult to identify
the cellular source.

Upon NETosis neutrophils expel a meshwork of DNA
which is decorated with histones and neutrophilic pro-
teases.76 Each component of this meshwork may play an
individual role in pathophysiology, or they may act in
concert. Nucleosomes, consisting of DNA and an octamer
of histone H2A, H2B, H3, and H4, respectively, form the
backbone of the meshwork released by the neutrophil.77

Nucleosomes as such are not cytotoxic, but cell-free histones
are highly cytotoxic most probably due to their strong
positive charge defined by their high levels of lysine and
arginine residues.78 Arginine-rich H3/H4 are the most toxic
since neutralization of these two histones dampens inflam-
mation.79,80 Interestingly, distortion of nucleosome struc-
ture, for example, by using benzonase nuclease results in
cytotoxicity,most probably due to exposure of the toxic parts
of histones.78

Although the detection of NETs (components) is an
appealing approach, there are many caveats that obscure
interpretation of results.81,82 First, in detecting NETs, his-
tone preparations always contain other proteins, making it
difficult to conclude that observed effects are due to histo-
nes. Specificity problems also occur with immunohis-
tochemistry, as nucleic acid solutions may be
contaminated with polyphosphates that trigger coagula-
tion. In addition, cross reactivity of antibodies to nuclear
proteins and DNA also affects interpretation of results.
NETosis induction in vitro in the absence of protease
inhibitors may result in the degradation of proteins and
antibodies used for analysis.

In developing tools for diagnosis or experimental research
related to extracellular traps, the focus should be on: quan-
tification, determination of the cellular origin, translation of
in vitro data to in vivo distinguishing between DNA from
extracellular traps and DNA from dying cells. Isolation of
neutrophils is very challenging and the different purification
protocols result in different levels of neutrophil priming,
impacting the interpretation of the results. In addition, a
standardization of stimuli used to induce NETosis is urgently
needed since the results obtained using different protocols
are difficult to compare and make a translation into the in
vivo situation very difficult. An example of this is NETosis
induced by phorbol 12-myristate 13-acetate, which takes at
least 3 hours, whereas using LPS, NETosis is achieved in
60minutes in vivo.83 Documented assays to measure NETs
in plasma targeting components released upon NETosis, for
example, citrullinated histones, complexes between DNA
and neutrophilic proteins, often lack specificity. Finally, it
remains open whether the data on NETs acquired in mice
reflect thebiologyof NETs in humans, sincemicehave unique

neutrophil subpopulations that may differ in NET formation
as compared with human neutrophils.

To study the impact of NETs in vivo in disease requires
models to follow NET formation in vivo, allowing research
into NETs as therapeutic targets for treating inflammatory
and thrombotic diseases. Timing of DNAse treatment to
disintegrate NETs seems crucial. Too early administration
of DNAse may result in harmful effects due to, for example,
inefficient “wall off” of bacteria.84,85 In addition, DNase
cleavage may result in the liberation of unwanted cell-free
DNA and DNA-binding proteins, which in turn may propa-
gate inflammation.

Inhibition of histone modification by PAD4 in specific
inflammation models is beneficial in mice for survival and
thrombosis.86–90However, the translation of PAD4 inhibition
into a therapeutic intervention in systemic inflammation
and thrombosis is not yet “established.” Currently, there is
still considerable uncertainty on whether NETs are impor-
tant in pathology and healing, or merely innocent
bystanders.

Theme 2: Potential Areas for Investigation

• Interindividual variability in G protein signaling and its
impact on efficacy and safety of antiplatelet agents.

• The efficacy and safety of novel interventions aimed at
GpVI, up to and including focused clinical studies in high
risk for thrombosis patients.

• Usefulness of new engineered systems, like organ-on-a-
chip as well as in silicomodeling approaches, in combina-
tion with traditional biochemical, cell biological, and in
vivo approaches to study how genetic or pharmacological
alterations of platelet function affect the hemostatic (and
thrombotic) role of cells.

• The role of neutrophils in different stages of atheroscle-
rosis and determine whether there is a specific subset of
neutrophils that is prone to undergo NETosis; implica-
tions for clinical outcomes.

• The impact of NETs in disease needs to be studied in
models that track/follow NETs in vivo, which would also
enable research of NETS as therapeutic targets.

• Interventions aimed at cleaving and inactivating NETs, for
example with DNAse, although potential side effects may
emerge due to release of more toxic histones.

Theme 3: Procoagulant Mechanisms

Tissue Factor Expressing Extracellular Vesicles in Cancer
Tissue factor is a transmembrane glycoprotein and receptor
for FVII/VIIa.91 TF in the intravascular compartment ismostly
confined to leukocytes, existing in a hidden or encrypted
form that can be decrypted to allow complex formation and
factor X activation.92 The decryption process depends on
several factors including externalization of phosphatidylser-
ine to the outer membrane leaflet, thiol-disulfide exchange
pathways, and sphingomyelin in the outer membrane.93 The
TF:FVIIa complex is the primary physiologic trigger of coag-
ulation and plays an essential role in hemostasis. However,
aberrant TF expression can promote thrombosis in several
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pathological settings.94 The focus here is on circulating TFþ
extracellular vesicles (EVs) as a biomarker for thrombotic
risk aswell as the role of TF in arterial and venous thrombosis
(►Fig. 3). EVs, formerly known as microvesicles or micro-
particles, refer to submicron vesicles that are released from
apoptotic cells, activated cells and tumor cells.95 Plasma
levels of TFþ EVs can be measured by activity- and anti-
gen-based assays, with the former being more sensitive and
reliable.96 In healthy adults, levels of TFþ EVs are undetect-
able.97 However, increased levels of TFþ EVs in different
diseases may trigger thrombosis.96 This has led to the idea of
using TFþ EVs as a potential biomarker to identify patients
at risk of developing thrombosis.

Arterial thrombosis is triggered by erosion or rupture of
atherosclerotic plaques resulting in the exposure of throm-
bogenic components, including TF. The majority of TF in
human atherosclerotic lesions is present on macrophages
and macrophage-derived EVs. Importantly, inhibition of TF
significantly reduced thrombosis after ultrasonic disruption
of carotid plaques in ApoE�/� mice, indicating that it plays a
critical role in thrombus formation after plaque rupture.98

Venous thromboembolism (VTE), which includes deep
vein thrombosis (DVT) and pulmonary embolism (PE),99 is
also triggered by TF. DVT initiation occurs in valve pockets of
larger veins due to low oxygen levels and turbulent blood
flow.99 This leads to activation of the endothelium, changing
it from an anticoagulant to a procoagulant surface. There are
many risk factors for VTE including cancer.99 Interestingly,
the rate of VTE varies in patients with different types of
cancer with pancreatic cancer, having one of the highest
rates.100 Circulating TFþ EV activity correlates with VTE in
pancreatic cancer patients.101 Tumor cells might release TFþ

EVs into the circulation and initiate VTE. Using a mouse
model bearing human pancreatic BxPc-3 tumors to evaluate
the role of tumor-derived TFþ EVs in thrombosis,102 tumor-
bearing mice had significantly larger thrombi in an inferior
vena cava stasis model comparedwith micewithout tumors.
Furthermore, an antihuman TF antibody significantly re-
duced thrombus size in tumor bearing but not control
mice. The results suggest that inhibition of tumor TF expres-
sion and/or reducing the generation of tumor-derived
TFþ EVs may represent a new approach to prevent cancer-
associated thrombosis.102

Extracellular Vesicles and Thrombin Generation in Acute
Ischemic Stroke
Although themanagement of acute ischemic stroke (AIS) has
much improved with the introduction of catheter guided
thrombectomy on top of antithrombotic and thrombolytic
agents, particularly in the early phase of stroke development
(<4.5 hours), many challenges remain. First, bleeding risk is a
feared complication of these treatments. Second, rates of
recurrent stroke remain high despite secondary prevention,
in particular in the first months after AIS.103,104 Third, stroke
is a heterogeneous condition with different causes.105 In
contrast to acute myocardial infarction (AMI), intensified
antiplatelet treatment for noncardioembolic AIS has not
provided net benefit but instead increased the rates of major
bleeding,106–108 except for short-term treatments in the first
few weeks after AIS.109,110 Biomarkers to help assess risk or
outcome are scarce.111

We investigated EVs and thrombin generation variables as
candidate biomarkers for risk stratification after AIS or
TIA.112 Platelet-derived EVs (PEV) can reflect platelet

Fig. 3 Schematic representation of the potential areas for investigation for themes 3 and 4. EVs from platelets or, for example from pancreatic
tumors, can trigger coagulation through activation of the TF-mediated extrinsic pathway or the intrinsic pathway, thereby contributing to both
venous and arterial thrombosis. TF-bearing EVs are potential biomarkers and are mechanistically of interest for atherogenic effects such as
enhancing atherosclerosis through the phenotypical switch of vascular smooth muscle cells from contractile to synthetic. This process
stimulates vascular calcification in which the vitamin K dependent matrix Gla proteinplays an important role. Overall, hypercoagulability and
thrombosis enhance pro-atherogenic processes through activated platelets and PAR-dependent thrombin or factor Xa signaling. Although
atherothrombosis is a net result of the effect of hypercoagulability on and in the plaque, the underlying mechanisms can be distinctly different,
depending on whether plaque rupture or erosion occurs. EV, extracellular vesicle; PAR, protease-activated receptor; TF, tissue factor.
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activation, in particular if they are expressing P-selectin.
Tissue factor positive EVs (TFþ EV) may reflect monocyte
activation; thrombin generation ex vivo and in vivo likely
reflects thrombogenicity. Baseline EV concentrations of all
types were higher for patients than matched healthy con-
trols, but only a few specific subpopulations were associated
with risk of new ischemic events. Notably neither phospha-
tidylserine positive P-selectinþ PEV nor PSþ/TFþ PEV, the
dominant TFþ EV population showed any association with
outcome. Instead only PS-negative TFþ PEV resulted in
increased risk of recurrent AIS or AMI. Surprisingly PSþ/
PEV tended to be associated with reduced risk, suggesting
that certain EV subpopulations may have protective effects
after AIS/TIA. Similarly, high levels of endogenous thrombin
potential and peak thrombin in the acute phase were associ-
ated with an unexpected reduced risk; in contrast high EV-
induced peak thrombin was associated with increased risk.
Overall results suggest that the hemostatic balance is dis-
turbed in the acute phase of AIS/TIA, with unexpected
consequences for long-term risk. Specific EV subpopulations
appear to play a role in this imbalance such as those lacking
PS. The ischemic/postischemic brain may be involved as it is
rich in TF and expresses coagulation proteins and their
inhibitors.113

Theme 3: Potential Areas for Investigation

• The role of the intrinsic pathway of coagulation in the
enhanced venous thrombotic phenotype observed in
mice bearing pancreatic tumors.

• The addition of biomarkers, such as PEVþ TF, to improve
the ability of risk assessment scores to identify cancer
patients that are at risk of VTE.

• Mechanisms regulating the blood-brain barrier (in health
and during ischemia/reperfusion (I/R) injury) and the
transmission of proteins and cells/EVs; the impact on
interpretation of soluble biomarkers (including TF posi-
tive EVs) originating from the brain.

• Mechanisms of production and clearance of EVs from
different platelet populations with different ratios of
PS/PC exposure, preferably assessed by different analytic
methods; this can improve the interpretation of the
pathophysiological significance of EVs in thrombosis.

Theme 4: Arterial Vascular Changes in Atherogenesis;
Attenuating Atherosclerosis and
Ischemia/Reperfusion Injury

Vascular Inflammation and Calcification
Vascular calcification is considered a late stage event in
atherosclerosis but already appears at early stages of the
disease (►Fig. 3). Microcalcification, at a scale undetectable
by conventional computed tomography scanning, causes
inflammation and plaque instability.114 Vitamin K-depen-
dent proteins require carboxylation for their biological ac-
tivity and play a crucial role in vascular calcification with a
key role for matrix Gla protein (MGP).115 The calcification
inhibitory function of MGP became clear from studies in
MGP�/� mice that were born to term, but all developed

vascular calcification early on and died within a few weeks
after birth. MGP is produced by vascular smooth muscle cell
(VSMC), which play a central role in vascular calcification.
Platelet EVs induce changes in VSMC, directing them toward
a pro-inflammatory and pro-calcifying phenotype.116 This
process is associated with a prothrombotic phenotype in
mice.117 Specific coagulation proteases like thrombin pro-
mote calcification118 and this effect can be counteracted
with dabigatran (Kapustin et al, unpublished). Interestingly,
the GLA domain of prothrombin as well as of protein S
inhibits calcification. Synthetic VSMCs start shedding EVs
in contrast to contractile VSMC, correlating with increased
calcification, which seems TF dependent.118 Drugs that
interfere with vitamin K dependent carboxylation, that is
vitamin K antagonists (VKA), induce calcification in VSMCs,
in mice as well as in humans. Vitamin K treatment reduces
VKA induced calcification, in part by carboxylation of MGP
and by reducing reactive oxygen species.119 Warfarin
increases EV release from SMC and these vesicles are loaded
with inactive uncarboxylated MGP.

Coagulation Proteases and Their Impact on
Atherosclerosis
Hypercoagulability is a driver of atherosclerosis.120 In con-
cert with cells and EVs, coagulation proteases are generated
that, when not inhibited by natural anticoagulants, interact
with PARs at the cell surfaces, including those of EC. Physio-
logically, thrombin binds to TM to generate aPC in complex
with EPCR, thereby providing EC protective effects through
noncanonical activation of PAR-1. Inflamed ECs show
changes in receptor presence and configuration, which
may make them more susceptible to effects of coagulation
proteases including thrombin and FXa in activating PARs.121

One of the consequences is a shift in aPC- toward thrombin-
mediated PAR-1 activation, and this biased signaling directs
protective signaling toward inflammatory signaling
effects.122,123 This shift toward pro-inflammatory actions
may also involve PAR-mediated contributions of FVIIa and
FXa that drive and/or aggravate atherogenesis and convert
atherosclerosis into a more unstable phenotype. Overall,
coagulation proteases are intimately associated with all
stages of atherosclerosis and contribute to plaque instability
in preclinical studies.124 Vice versa, plaque instability trig-
gers coagulation. Thrombotic coagulation mechanisms may
be different depending on rupture or erosion of the athero-
sclerotic plaque.125,126 Due to changes in atherosclerotic
phenotype (e.g., influence of statins and antismoking cam-
paigns), erosion is becoming more prevalent than rupture.
Whether indeed erosion and rupture trigger fundamentally
different thrombogenic mechanisms in which either plate-
lets (collagen) or clotting factors (TF exposure, NETs and
contact activation) are mobilized with a dominance favoring
one over the other, has been poorly explored. The contribu-
tion of cells like VSMCs in driving prothrombotic mecha-
nisms deserves further attention, as well as the potential
differences betweenvascular beds and the impact of vascular
calcification. Clinically, there is a need for diagnostic imaging
techniques to distinguish eroded from ruptured plaques,

Thrombosis and Haemostasis Vol. 120 No. 4/2020

Thrombo-Inflammation in Cardiovascular Disease d’Alessandro et al. 547

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ite

it 
M

aa
st

ric
ht

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



which is presently being addressed by optical coherence
tomography.127–129

Although preclinical studies clearly demonstrate these
links between coagulation activity and atherosclerosis, clin-
ical evidence is still scarce and mostly circumstantial.130,131

The clinical application of direct oral anticoagulants against
thrombin or FXa could affect cardiovascular changes driven
by coagulation proteases. Observations from preclinical
studies demonstrate that inhibiting thrombin or FXa attenu-
ates atherogenesis in atherosclerosis prone mice.132 More-
over, regression of atherosclerosis during prolonged
rivaroxaban treatment occurred, suggesting cardiovascular
protection through anticoagulant therapy.133 Themajority of
preclinical models show a phenotypical switch toward en-
hanced plaque stability upon attenuation of coagulation
activity. Limited clinical data support a possible advantage
of the direct anticoagulants over either no anticoagulation or
VKA. Whether combination therapy of anticoagulant and
platelet inhibition such as applied in the COMPASS trial (see
“PAD, where do the guidelines lead us?” and further) offers
additional vascular protection due to their synergistic
actions is still unknown.134 Vascular protection could also
be achieved with aPC variants that lack the anticoagulant
activity but can still induce cellular protective effects
through EPCR-dependent PAR-1 activation. This strategy is
currently being employed to provide protection for the
endothelial blood brain barrier in patients with ischemic
stroke.135,136 Whether molecules such as recombinant aPC
may also offer systemic vascular protection remains
unanswered.

Pleiotropy of Antiplatelet Agents: Impact on
Ischemia/Reperfusion Injury?
The pathogenesis of cell damage following reperfusion of
ischemic tissue (I/R injury) is due to enhanced production of
inflammatorymediators, recruitment of polymorphonuclear
leukocytes (PMNs), and blockage of blood flow.137–139 Leu-
kocyte-platelet-EC interactions are important for microvas-
cular dysfunction and release of cytotoxic mediators such as
reactive oxygen intermediates and proteases, and imply a
role for the bridging molecule, P-selectin. Myocardial I/R
injury can potentially be limited by conditioning of the heart.
In spite of abundant in vitro and preclinical data supporting
benefits of ischemic preconditioning, such strategies are not
yet implemented in clinical practice guidelines.

Antiplatelet agents may potentially contribute to limita-
tion of I/R injury, depending on the type of agent (class), dose
(low vs. high), and timing of conditioning (pre- and post-
conditioning PCI).

Aspirin benefits exceed TXA2 inhibition as it may increase
platelet nitric oxide (NO) synthesis, protect NO from inacti-
vation, improve endothelial dysfunction and exert antiin-
flammatory effects.140 Combining aspirin with a P2Y12

antagonist (dual antiplatelet therapy, DAPT) is recom-
mended by the clinical guidelines for the management of
ACS. Either for secondary prevention, or for patients under-
going a revascularization procedure, oral antiplatelets agents
are utilized: clopidogrel, prasugrel, and ticagrelor. These

agents (either thienopyridines or nonthienopyridines) indi-
rectly or directly inhibit the P2Y12 ADP receptor. Although
DAPT is better than single APT in reducing the risk of stent
thrombosis, it has been suggested that when combined with
a high level of P2Y12 blockade, the net effect of higher dose
aspirin could be removal of antithrombotic and vasodilating
prostanoids that lessen the antithrombotic effectiveness of
the combined treatment.141 Lower dose aspirin with the
adenosine reuptake inhibitor, dipyridamole, started during
ischemia augmented the effects of simvastatin in limiting
infarct size.142 In contrast, high-dose aspirin blocked the
protective effect of simvastatin. Combination of low-dose
atorvastatin with either the phosphodiesterase-III inhibitor
cilostazol or dipyridamole synergistically limited infarct size.
The combination of dipyridamole with low-dose aspirin and
simvastatin resulted in the smallest infarct size, suggesting
that antiplatelet regimens may require modification for
patients who are receiving statins.142,143 Patients receiving
P2Y12 receptor antagonists may already be cardioprotected
through the conditioning pathways. If it is confirmed that
patients receiving P2Y12 receptor antagonists are already
benefiting from conditioning cardioprotection, other mech-
anisms should be targeted for further protection. Clopidogrel
and cangrelor protect the monkey heart against infarction
via a mechanism involving inhibition of platelet signaling
pathways activated during reperfusion to prevent reperfu-
sion injury.144 Ticagrelor affects the adenosine compartment
as it inhibits the equilibrative-nucleoside-transporter 1 and
thereby adenosine cell reuptake.145 The PLATO trial compar-
ing ticagrelor and clopidogrel in ACS patients demonstrated
an all-cause mortality benefit for ticagrelor prompting a
hypothesis of pleiotropic effects beyond its antiplatelet
properties.145

In a rat model, ticagrelor and rosuvastatin when given in
combination have an additive effect on local myocardial
adenosine levels in the setting of I/R. Increased adenosine
concentrations translate to further platelet inhibition, regu-
lation of inflammatory mediators, and arterial vasodilation
that may reduce I/R injury.146

In a canine model, tirofiban, a GPIIb-IIIa antagonist,
administered at the time of myocardial reperfusion, which
produced a modest reduction of tissue necrosis during
reocclusion and prolonged occlusion times. In conclusion,
limiting platelet aggregation during reperfusion impacted
infarct development.147 Thus, short-acting GPIIb-IIIa antag-
onists such as tirofiban and epitifabtide may not only reduce
thrombus burden and microembolization but also limit
consequences of I/R injury.

Other targets to enable conditioning in conjunction with
antiplatelet agents include DNA glycosylase/AP lyase repair
enzyme activity that confers cytoprotection in several injury
models. Endonuclease III (Endo III), a mitochondrial DNA
glycosylase/APlyase, was studied in terms of infarct size
reduction in a myocardial I/R injury model.148 In this study,
an i.v. bolus of 8mg/kg EndoIII, just prior to reperfusion,
reduced infarct size fromapproximately 44 to 25%. This effect
was amplified and the infarct size was reduced to 15% when
EndoIII was combined with cangrelor. EndoIII protects the
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heart from necrosis by avoiding the release of pro-inflam-
matory fragments of mitochondrial DNA (mtDNA) into the
myocardium. EndoIII and DNase have been proposed as
agents that can be administered at reperfusion to add their
protective effect to those of a P2Y12 antagonist.148,149

Clinically, there is still no therapy aimed at reducing I/R
injury (MI size) that is clearly associated with improved
clinical outcomes.

Theme 4: Potential Areas for Investigation

• Determine triggers that drive VSMCs to calcification
and/or fibrosis; contribution of microcalcification to pla-
que instability; role of EVs as mechanistic link between
activated platelets, hypercoagulability, and VSMC’s vas-
cular calcification.

• Contribution of specific PARs in mediating the atherogen-
ic effects of coagulation proteases, as well as the required
anticoagulant level to maintain sufficient APC generation
and its cytoprotective effects.

• Impact of sex, age, and menopause on mechanisms that
relate to eroded versus ruptured plaque triggered
atherothrombosis.

• Improvement of imaging techniques to differentiate
thrombosis caused by plaque rupture from erosion.

• Mechanism(s) by which platelet P2Y12 inhibitors, aspirin,
or agents such as dipyridamole induce protection against
I/R injury in man.

• Whether there is a beneficial role of “healthy” platelets in
the context of myocardial I/R injury and how this poten-
tially protective role is changed in, for example, type 2
diabetes.

• Effects of combination therapies to target multifactorial
mechanisms of I/R injury.

Theme 5: Management of Patients with Arterial
Vascular Disease

Acute Coronary Syndrome: Management before
Admission
Management of patients with acute coronary syndrome
(ACS) has dramatically changed over the past decades.
Patients with chest pain undergo triage already in the
ambulance, differentiating cardiac from noncardiac. In cases
of suspected cardiac ischemia, treatment with vasodilators
(nitroglycerin) and aspirin is started. Based on the electro-
cardiogram additional management can be initiated during
transport and this information is forwarded to the acute
coronary care department. Part of this risk and management
stratification could be started even earlier by the attending
physician (general practitioner [GP] in most cases). Risk
scores like HEART,150 could be used in the general practi-
tioner setting, but several issues need to be explored, includ-
ing pretest probability in the target populations. Education
and training would be needed, in particular in handling
point-of-care (POC) devices correctly. Implementation, may-
be involving integrating eHealth solutions, needs to be
addressed systematically, starting with central GPs as refer-
ral centers.

Theoretically, POC biomarkers, including troponin, could
be routinely used by GPs when evaluating a patient with
chest pain. Important issues include demonstrating that such
a test has a high negative predictive value; rather troponin
testing has been implemented for positive predictive value.
Results of early triage would include timely decisions on
antithromboticmedication, such as early P2Y12 inhibition, to
be administered by ambulance personnel in the future. For
example, patients with chest pain and a HEART score �3
could be treated in the ambulance. A pitfall is that only 25 to
30% of patients would benefit from antithrombotic treat-
ment, but the remainder is exposed to their potential bleed-
ing risk that increases along with thrombotic risk, notably
age. Therefore, short-acting (or reversible) antithrombotic
drugs may be helpful in the early phase of the triage process.

Ischemic Stroke; Risk Estimation and Prognosis
Ischemic stroke is an acute heterogeneous thrombo-inflam-
matory disorder requiring diagnosis, triage, and therapy as
soon as possible. The old adage of “time is brain” remains
relevant, even with the field looking to expand the current
time window for thrombolysis and thrombectomy.151,152

Because of this there is worldwide interest in so-called
mobile stroke treatment units, dedicated ambulances with
computed tomography capability that allow early diagnosis
and subsequent treatment of ischemic stroke, reducing time-
to-treatment by almost 30minutes.153,154 Evidence for ef-
fectiveness on clinical outcomes is expected soon.155,156

As discussed in “EVs and thrombin generation in AIS,”
stroke is a highly heterogeneous disease when considering
clinical presentation, severity, imaging, location of the
lesion, and functional outcome which are captured by
numerous scores, scales, and classification systems. Proba-
bly, the most widely known is the modified Rankin Scale, a
seven-category ordinal outcome focused on the functional
outcome after stroke. Using the modified Rankin Scale
measured at 90 days after stroke as the primary endpoint
in clinical trials has given the stroke field a powerful,
simple, and standardized way to evaluate whether a new
intervention indeed delivers benefit for the patient.
Researchers in the field of thrombosis should consider using
a similar approach in studies evaluating functional outcome
after VTE.157

Coagulation is a sine qua non for ischemic stroke, but the
role of hypercoagulability, an increased clotting propensity
within the limits of normal hemostasis, is not so clear.
Hypercoagulability may increase the risk of ischemic stroke
in the young, suggesting its role in cryptogenic stroke.158,159

Although interesting from a causal point of view, this finding
has yet to lead to actionable clinical insights to prevent
strokes. However, even though there is substantial data on
hemostasis biomarkers to predict outcome after stroke, their
added predictive value is limited—partly due to varying
methodologies in the different studies, especially in acute
phase blood sampling.111 Still, some emerging treatment
targets can be identified such as coagulation FXI for which
now small molecule and antisense oligonucleotide treat-
ments are being developed and patented at an
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unprecedented rate.160 FXI’s relatively minor role in hemo-
stasis coupled to its possible critical role in thrombus
formation suggest that thrombosis risk might be reduced
without an increase in bleeding. The role of NETs with their
negatively charged long DNAmolecules that act as a scaffold
in clot formation, is also not completely understood. New
treatments that limit NET formation or target NETs directly
(e.g., DNAse) could be tested as an adjunct to
thrombolysis.161

Peripheral Arterial Diseases, Where do the Guidelines
Lead Us?
The recent 2017 ESC Guidelines on the Diagnosis and Treat-
ment of Peripheral Arterial Diseases (PAD), in collaboration
with the European Society for Vascular Surgery, cover all
arterial beds outside the heart, including carotid and verte-
bral arteries, upper extremities, mesenterial arteries, renal
arteries, and lower extremity arteries.162 Patients with par-
ticular lower extremity arterial disease (LEAD) present with
stable symptoms of intermittent claudication or with critical
limb ischemia. LEAD is associated with an increased cardio-
vascular event rate163 and therefore secondary prevention is
very important to improve prognosis. In addition to lifestyle
improvement (smoking cessation, walking, and healthy
diet), specific medical interventions include statins and
more recently, PCSK9 inhibitors (aiming for low density
lipoprotein (LDL) cholesterol <1.8mmol/L), strict diabetes
and blood pressure control and antithrombotic medication.
The latter should minimally be an antiplatelet agent, with a
preference for clopidogrel over aspirin.164 In the Euclid trial
ticagrelor was noninferior to clopidogrel in patients with
LEAD.165 Surprisingly, in patients with asymptomatic LEAD,
aspirin was not better than placebo in spite of the similarly
elevated mortality in such patients.166 In general, combined
APT does not add benefit to the patient and increases
bleeding risk; it is confined to short-term use, for example,
after endovascular interventions.167 The use of oral anti-
coagulants (mostly VKA) does not add any benefit in patients
with LEAD except for those that underwent venous bypass
grafting.168 The most recent addition to the antithrombotic
arsenal is the so-called COMPASS regimen, comprising rivar-
oxaban 2.5mg bd plus low dose aspirin, a combination that
reduced cardiovascular mortality as well as major acute limb
events in patients with PAD (LEAD or carotid artery dis-
ease).169 The next guidelines will probably be modified
based on COMPASS and the results of the ongoing Voyager
trial. A very useful intervention for patients with intermit-
tent claudication is exercise training that may, in various
ways, reduce the burden of the vicious cycle of thrombo-
inflammation associated with this vascular disease.170 Exer-
cise has documented beneficial effects on endothelium,
reduces inflammation, stimulates vascular angiogenesis,
and improves muscle metabolism and blood flow. This
includes changes in monocytic function toward a less in-
flammatory phenotype.171 With currently available inter-
ventions including a plethora of medication, developing
individually tailored management of patients with LEAD is
imperative.

Risk Stratification with Biomarkers: Promises and
Deliverables
The availability of high specificity, high sensitivity, and high
throughput methods to measure circulating biomarkers of
cellular stress, organ dysfunction, and inflammation have led
to testing and validation of their diagnostic and prognostic
utility in patients with acute and chronic coronary heart
disease (CHD), and atrial fibrillation (AF) as well as in
apparently healthy individuals.

Utility of Circulating Protein Biomarkers in Coronary Heart
Disease
Inflammatory biomarkers have attracted considerable inter-
est and in a recent meta-analysis of 29 population-based
prospective cohort studies, the importance of inflammatory
cytokines and the risk of nonfatal AMI and CHD was ana-
lyzed. Some of cytokines showed an increased risk of be-
tween 10 and 25%, including interleukin (IL)-6 when
adjusted for clinical risk factors. This indicates that circulat-
ing levels of pro-inflammatory cytokines in initially healthy
persons are associated with CHD outcomes independent of
traditional clinical risk factors.172

In the Stabilization of Atherosclerotic Plaque by Initiation
of Darapladib Therapy Study (STABILITY) which tested the
effect of the selective Lp-PLA2 inhibitor Darapladib, in
patients with chronic CHD, five different biomarkers, N-
terminal portion of the prohormone of B-type natriuretic
peptide (NT-proBNP), troponin T, LDL-C, IL-6, and growth
differentiation factor 15 (GDF-15), showed strong prognostic
capabilities for prediction of cardiovascular (CV) events and
death.173,174

Multivariable Cox regression analysis was used to develop
a clinical prediction model based on the most important
biomarkers for CV death. Among clinical variables and bio-
markers NT-proBNP had the strongest prognostic value, with
a Chi-square value over 170. Clinical variables that contrib-
uted to discrimination concerning CV death were age, dia-
betes, smoking and prior PAD, and the biomarkers GDF-15,
LDL-C, and IL-6. Based on these data, a biomarker-based
model for prediction of CV death was developed and validat-
ed. The final prediction model entailed (1) age, (2) biomark-
ers NT-proBNP, troponin T, and LDL-cholesterol, and (3)
clinical variables; smoking, diabetes, and PAD. This ABC-
model was well calibrated and had high discriminatory
ability for CV death (C-index 0.81) in both the derivation
STABILITY study and the validation Luric cohort.175 Thus, this
ABC-score provides a robust tool for the prediction of CV
death in patients with stable CHD. It is based on a small
number of readily available factors and can be widely used
for clinical assessment and guide management-based CV
risk.

New analytical high-throughput technologies, such as
modified aptamers (Somalogic) and Proximity Extension
Assay (Olink Proteomics), allow simultaneous measure-
ments of hundreds of biomarkers in a small volume of
plasma for screening multiple protein biomarkers for asso-
ciations with CVD and use of combination of biomarkers to
predict adverse events.176,177 In the Heart and Soul study, a
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prospective cohort of patients with CHD from 12 clinics in
the San Francisco Bay Area with enrollment from Septem-
ber 2000 to December 2002, follow-up to 2011 (derivation
cohort) and HUNT3, a Norwegian population based study
(the validation cohort), enrollment 2006 to 2008 and follow-
up 2012 (5.6 years), the Somalogic aptamer technology was
used. Out of 1,054 proteins, nine biomarkers were associated
with CHD and some of which are novel.178 A 9-ProteinModel
was developed for the combined endpoint of MI, stroke, HF,
and death. The participants had 4-year cumulative event
rates of less than 10% in the first deciles (lowest score) and
between 60 and 80% event rates in the 10th deciles (highest
score). The combination of the 9-Protein Model with the
standard Refit Framingham Model also outperformed Refit
Framingham Model alone (c-indices, 0.71 vs. 0.64 in the
validation cohort) in predicting patient’s risk.

Another multimarker tool to identify incident major
adverse coronary events (MACE), a composite of CV death,
MI and stroke, in patients referred for coronary angiography,
was recently developed in 649 patients (derivation cohort)
and 278 patients (validation cohort) (the Casablanca study).
This score includes four biomarkers; NT-proBNP, KIM-1,
osteopontin, and tissue inhibitor of metalloproteinase
(TIMP-1) and has a promising performance with an area
under the curve (AUC) of 0.79 better than clinical variables
alone (AUC¼ 0.75).179

Thus, protein biomarker profiles reflecting different
pathophysiologic mechanisms of MACE in several popula-
tions with stable CHD might be useful for prognostication
and decision support. Further external validation studies are
needed to elucidate the importance of these novel biomarker
tools.

Biomarkers and Antiinflammatory Therapy
Statins have a beneficial effect in reducing inflammation
with a decrease in high sensitivity (hs) C-reactive protein
(CRP) as a biomarker. In the Jupiter study, rosuvastatin
treatment decreased LDL-C and hsCRP but did not address
whether reduction of inflammation in the absence of cho-
lesterol lowering might reduce CV events. This question was
addressed in the Cardiovascular Risk Reduction Study (CAN-
TOS)180,181 in which the effect of Canakinumab, a monoclo-
nal antibody targeting IL-1β, in stable post-MI patients with
elevated hsCRP, level was studied. Increased doses of Cana-
kinumab reduced the hsCRP and IL-6 levels without affecting
LDL-C level. Canakinumab also reduced the cumulative inci-
dence of CV events over a 4-year period further discussed in
“promising strategies for prevention and treatment of arte-
rial thrombo-inflammation,” below.

In CIRT (Cardiovascular Inflammation Reduction Trial),
however, low-dose methotrexate—a broad-spectrum anti-
inflammatory therapy—neither reduced IL-1β, IL-6, or hsCRP
nor lowered cardiovascular event rates.182 The different
outcomes might result from the different levels of hsCRP,
at the time of inclusion in these two studies, signifying
different levels of ongoing inflammation.182 Most recently,
low dose colchicine reduced recurrent ischemic events in
patients after a recent AMI.183

Biomarkers for Determining Thromboembolic Risk and
Bleeding during Antithrombotic Therapy in Atrial Fibrillation
AF is the most common sustained arrhythmia and confers an
independent increased risk of stroke, heart failure, and
death. Total 20 to 30% of all strokes are due to AF. Biomarkers
that include cardiovascular stress, myocardial injury, cardiac
and renal dysfunction, coagulation activity, and inflamma-
tion are associated with underlying pathophysiology and
clinical events and may help refine risk assessment in
patients with AF.184 Circulating EVs and microRNAs are
involved in the pathophysiological process of AF and may
contribute to inflammation, activation of coagulation, and
angiogenesis in AF.

Inflammation may be associated with AF as well as the
pathogenesis of the arrhythmia. The utility of inflammatory
biomarkers as indicators of stroke or other cardiovascular
events was therefore investigated in the Apixaban for the
Prevention of Stroke in Subjects with AF (ARISTOTLE) study.
Two biomarkers of inflammation, IL-6 and CRP, were signifi-
cantly related to CV death as well as all-cause mortality but
were not associated with stroke or systemic embolic events
after adjustment for clinical risk factors and other
biomarkers.185

The ARISTOTLE study demonstrated that Troponin I/T and
NT-proBNP contained more prognostic information than
most clinical parameters in AF. Based on the stroke and
bleeding cases in the ARISTOTLE study, the ABC-stroke score
and the ABC-bleeding score were established for the predic-
tion of risk for these events. Three factors—age (A), NT-
proBNP, and troponin I/T (biomarkers¼ B) and prior stroke
(clinical event¼ C)—were shown to have a high correlation
with stroke occurrence (χ2> 20), while five other factors
including age, GDF-15, troponin T, hemoglobin level, and
previous bleeding were shown to be highly correlated with
bleeding events (χ2> 10).186,187 TheABC-stroke andbleeding
scoreswere further validated in the ENGAGE AF-TIMI 48-trial
with samples fromover 8,700 patients and outperformed the
clinically used CHA2DS2-VASc score for predicting stroke in
both the ARISTOTLE study (c-indices, 0.68 vs. 0.62) and the
ENGAGE study (c-indices, 0.67 vs. 0.59) and the HAS-Bled
score for bleeding, ARISTOTLE (c-indices, 0.68 vs. 0.61),
ENGAGE (0.69 vs. 0.62).188

In conclusion the biomarkers, NT-proBNP and troponin
I/T, were very valuable in evaluation of patients with CHD
and AF. Inflammatory biomarkers, IL-6 and hsCRP, were also
effective in monitoring a patient’s inflammatory activity and
effectiveness of antiinflammatory treatment in patientswith
CHD. The 9-Protein Model, ABC-stroke score, and ABC-bleed-
ing score developed using multibiomarker approaches were
also shown to provide better risk prediction than Refit
Framingham Model, CHA2DS2-VASc, and the HAS-BLED
score, respectively.

Current Limitations in Biomarker Implementation
In many studies, biomarkers have been determined at onset
while clinical outcomes occur throughout follow-up at dif-
ferent time intervals. Hence, this dynamic aspect is missing
in most biomarker assessment studies and biomarkers are
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often nonspecific in relation to complex diseases. This may
limit their clinical relevance.189

The New Era of Antithrombotic Management

Personalized Antithrombotic Management
In patients with chronic coronary artery disease, vascular
protection strategies beyond current guideline-based inter-
ventions (e.g., aspirin, statin, and ACE-I/antihypertensive
agents) have become available including four new options:
PCSK9i, SGLT2 inhibitors and GLP-1 RA, dual pathway inhi-
bition (DPI), and antiinflammation (canakinumab). These
interventions make use of available biomarkers including
LDL, Hba1c, and hsCRP; for DPI no current biomarker is
available.

The new interventions add substantially to risk reduction,
showing mortality reductions of 15% in Odyssey,190 32% in
EMPA-REG,191 18% in Compass,169 and 14% in Cantos.180

In addition to biomarkers, is there a role for genotyping for
a more personalized approach? Although genotyping for the
CYP2C19 gene in clopidogrel resistance did not predict
clinical events,192 managing patients using a genotype-
based strategy for clopidogrel provided noninferiority in
efficacy when compared with standard use of ticagrelor or
prasugrel in patients with a PCI indication.193 Other current
options to individualize treatment include stroke risk esti-
mation based on CHA2DS2-VASc score, although refinement
might allow dissection of risk subclasses even further.2

Implant Antithrombotic Management
What is the optimal antithrombotic strategy post-TAVI
(transcatheter aortic valve implantation)? The prevalence
of subclinical leaflet thrombosis after intervention might
have been underestimated and may range from approxi-
mately 15 to 40%.194–197 Currently, DAPT is prescribed but
would oral anticoagulation be better? Whether a direct oral
anticoagulant (DOAC) could be applied instead of VKA
remains questionable. The GALLILEO trial was stopped be-
cause in the rivaroxaban arm more thromboembolisms and
more bleeding with higher mortality were seen compared
with the aspirin arm.198 Further research on the most
effective way of preventing thrombosis at these artificial
surfaces is warranted. In addition, biomarkers like throm-
boelastography post-TAVI may be helpful in documenting
clotting tendency (RISTRATAVI study NCT0364 9594). Other
improvements may come from platelet profiling with whole
blood tests as surrogate parameter for leaflet thrombosis, or
eventually the use of other devices, including left atrial
appendix closure devices, left ventricular assist devices
(LVAD), or extracorporeal membrane oxygenation circula-
tion, whichmay require less intense antithrombotic therapy.

Dual Pathway Antithrombotic Therapy
Given the importance of TF in initiating thrombosis, as well
as in the context of a ruptured plaque, the use of combined
anticoagulant and antiplatelet therapymakes sense. Thiswas
the basis for the regimen tested in the COMPASS trial
discussed above.169 Here, the DPI combination was superior

in efficacy compared with either agent alone. Interestingly,
the curve for rivaroxaban only starts to deviate after approx-
imately1.5 year, which is comparable to the previous obser-
vation for statins. It remains unknown whether the
rivaroxaban 5mg bd survival line would eventually have
merged with the rivaroxaban 2.5 mg plus aspirin arm since
the trial was prematurely stopped.

Novel Antithrombotic Targets
Targeting factor XI is promising in VTE prevention,199 see
previous section “ischemic stroke; risk estimation and prog-
nosis” and further in “promising strategies for prevention
and treatment for arterial thrombo-inflammation.” Factor IX
targeting by aptamer was stopped at phase 3 stage for
futility.200 Platelet-related targets include Gp-VI, CLEC-2, P-
selectin, vWF/ADAMTS13, CD39, platelet a2-adrenoreceptor,
and platelet kinases/phosphatases, as discussed in part in
previous sections. Other targets include the contact pathway
(FXII) andrelated inhibitors of neutrophil activation (NET
formation), polyphosphates, and targeted thrombolytic
strategies.2

How to Improve Secondary Prevention after Coronary
Thrombosis?
Patients that suffered from AMI had approximately 10 years
lower life expectancy compared with those without an AMI
in the Framingham study.201 Often multiple active plaques
are present in patients with ACS, which explains the pro-
pensity to further atherothrombotic events.202 Preventive
measures after ACS include, in addition to revascularization
procedures, improved lifestyle and modification of active
risk factors that includes treatment of dyslipidemia, blood
pressure, diabetes, and thrombotic risk. Antiinflammatory
drugs may show some benefit in selected patients as sug-
gested by the CANTOS trial, as discussed in the next
section.180

Antiplatelet therapy is a cornerstone in the management
of all patients with CAD. Multiple platelet activation path-
ways can be targeted among which aspirin and P2Y12 recep-
tor inhibitors have become standard agents for a prolonged
duration after ACS and/or PCI. Clopidogrel is a second-gen-
eration thienopyridine that inhibits the P2Y12 receptor via an
active metabolite generated in the liver. However, the phar-
macodynamic response to clopidogrel is highly variable
among subjects, such that in approximately 30% the anti-
platelet effect is insufficient (clopidogrel “resistance”203).
Comparison of the PEGASUS-TIMI 54 platelet function sub-
study and the STEEL PCI study demonstrates an extensive
overlap between ADP-induced platelet aggregation with
placebo and with clopidogrel, respectively.204,205 The more
effective and reliable P2Y12 inhibition observed with tica-
grelor explains its markedly greater efficacy in preventing
stent thrombosis compared with clopidogrel.206,207

In the PEGASUS-TIMI 54 trial, ticagrelor was superior to
placebo in combination with aspirin in reducing CV events
beyond 1 year after MI, while fatal bleeding was not in-
creased.208 Long-term DAPT reduces ischemic events follow-
ing MI in patients at high CV risk at the cost of more nonfatal
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bleeding. The most pronounced benefit of long-term DAPT is
seen in AMI patients with unmodifiable risk factors: multi-
vessel CAD, diabetes, CKD (epidermal growth factor receptor
<60mL/min), coexistent PAD, and greater age.209 Excluding
patients with risk factors for bleeding, such as anemia and
prior hospitalization for bleeding, may further enhance the
benefit of long-termDAPT. Thebiomarker GDF-15may play a
role in assessing bleeding risk although prospective studies
are warranted to determine its utility.210 Selecting patients
with multivessel CAD, either very severe and/or associated
with diabetes, CKD, PAD or recurrent AMIs, is likely to reduce
CV death among other ischemic outcomes.209,211 Rivaroxa-
ban 2.5mg bd in combination with aspirin offers an alterna-
tive therapy in high-risk patients with stable multivessel
CAD or prior MI, including patients with prior nonlacunar
ischemic stroke.169,209

Impaired fibrinolysis is an independent predictor of poor
outcome after ACS and represents a potential target for new
therapies.212 Moreover, there is a need to further investigate
how safety of combined antithrombotic treatments can be
improved, in particular regarding bleeding complications.
Potentially safer strategies include drugs like Revacept (GPVI
antagonist) and 5HT2A receptor antagonists. To tackle the
inflammatory components, there is evidence from the PLATO
study that clopidogrel attenuates systemic inflammation via
an off-target effect213 although the mechanism is not clear
yet. This explains why clopidogrel has more antiinflamma-
tory effects than ticagrelor despite the greater ability of
ticagrelor to inhibit the promotion of inflammation by
activated platelets.214 Low-dose aspirin does not have any
detectable antiinflammatory effects and may even promote
inflammation under some circumstances.215

Promising Strategies for Prevention and Treatment of
Arterial Thrombo-Inflammation
Atherosclerotic plaque disruption triggers platelet activation
and initiation of coagulation and subsequent thrombin gen-
eration. Thrombin not only converts fibrinogen to fibrin but
also serves as a potent platelet agonist and driver of inflam-
mation. Therefore, thrombin links thrombosis with platelet
activation and inflammation.216

Antiplatelet therapy is a cornerstone for prevention and
treatment of atherothrombosis because platelets predomi-
nate in arterial thrombi. The principles of (D) APT have been
discussed in the previous sections.

Despite single APT or DAPT, up to 5% of patients with
chronic atherothrombosis and up to 11% of patientswith ACS
have recurrent ischemic events each year. The limited utility
of APT suggests that these events are triggered by a stimulus
that is unresponsive to suppression of platelet activation.
This stimulus is TF that is exposed at sites of atherosclerotic
plaque disruption and initiates coagulation and triggers
thrombin generation.217,218 Therefore, concomitant sup-
pression of thrombin generation and platelet activation
may be better than antiplatelet therapy alone for prevention
of atherothrombosis.

The dose of rivaroxaban for stroke prevention in patients
with AF is 20mg once daily; the dose is reduced to 15mg

once daily in patientswith a creatinine clearance between 15
and 50mL/min. When administered in combination with
DAPT in ACS patients, low-dose rivaroxaban (2.5mg twice
daily) had a better benefit-risk profile than a higher dose
regimen (5mg twice daily) for the prevention of recurrent
ischemic events.219 The importance of using the lowest
effective dose is highlighted by the results of the APPRAISE
trial. In that study, administration of the treatment dose of
apixaban (5mg twice daily) on top of DAPT increased the risk
of bleeding in ACS patients without reducing the risk of
recurrent ischemic events.220 Therefore, for successful DPI,
selection of the appropriate dose regimen of DOAC is
essential.

The benefits of DPI were revealed in the COMPASS
trial.169 In that study, 27,395 patients with stable CAD
or PAD were randomized to one of three treatments arms
after a run-in phase: rivaroxaban 2.5 mg twice daily with
aspirin 100mg once daily; rivaroxaban 5mg twice daily
alone, or aspirin 100mg once daily alone. The primary
outcome was a composite of cardiovascular death, stroke,
or nonfatal MI. About 90% of participants had CAD and
27% had PAD. The primary outcome was significantly
lower in the rivaroxaban plus aspirin group than in the
aspirin alone group (4.1 and 5.4%, respectively; hazard
ratio [HR]: 0.76, 95% confidence interval [CI]: 0.66–0.86;
p< 0.001). This translates to an absolute risk reduction of
1.3%, a relative risk reduction of 24%, and a number
needed to treat of 76. The primary outcome was not
significantly lower with rivaroxaban alone compared
with aspirin (4.9 and 5.4%, respectively; HR: 0.90, 95%
CI: 0.79–1.03; p¼ 0.12). All-cause mortality was reduced
by 0.7% with the rivaroxaban and aspirin combination
compared with aspirin alone (HR: 0.82, 95% CI: 0.71–0.66;
p¼ 0.01). The rate of major bleeding was significantly
higher in the rivaroxaban plus aspirin group than in the
aspirin alone group (3.1 and 1.9%; respectively; HR: 1.70,
95% CI: 1.40–2.05; p< 0.001). Most of the excess bleeds
were in the gastrointestinal tract, and there was no
significant increase in the rates of intracranial or fatal
bleeds. The rate of the net clinical benefit, the composite
of cardiovascular death, stroke, MI, fatal, or symptomatic
bleeding into a critical organ, was lower in the rivarox-
aban plus aspirin group than in the aspirin alone group
(4.7 and 5.9%, respectively; HR: 0.80, 95% CI: 0.70–0.91;
p< 0.001). Therefore, the combination of low-dose rivar-
oxaban and aspirin has a clear net benefit for the preven-
tion of recurrent ischemic events compared with aspirin
alone.

Thrombosis and inflammation are intimately connected,
and inflammation contributes to atherothrombosis. Modi-
fied lipoproteins, such as oxidized LDL, promote the inflam-
matory reactions that characterize and drive atherosclerosis.
Leukocyte recruitment to the arterial wall is an important
step in this process. Inflammatory cells elaborate cytokines
such as IL-1, IL-6, and tumor necrosis factor and cytokine
levels are elevated in most, if not all, inflammatory states. IL-
1β is central to the inflammatory response and drives the so-
called IL-6 signaling pathway.
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In the CANTOS trial, which enrolled 10,061 patients with
prior MI and high-sensitivity CRP levels �2mg/dL, patients
were randomized to treatment with canakinumab (at doses
of 50, 150, or 300mg every 3 months) or to placebo.180

Compared with placebo, the primary efficacy endpoint, a
composite of nonfatal MI, nonfatal stroke, or cardiovascular
death, was reduced by approximately 15% in the 150-mg
canakinumab group (HR: 0.85, 95% CI: 0.74–0.98; p¼ 0.021)
and the 300-mg group (HR: 0.86, 95% CI: 0.75–0.99;
p¼ 0.031) but not in the 50-mg canakinumab group (HR:
0.93, 95% CI: 0.80–1.07; p¼ 0.30). Canakinumab did not
reduce all-cause mortality compared with placebo (HR:
0.94, 95% CI: 0.83–1.06; p¼ 0.31), and it was associated
with a higher incidence of fatal infections. Therefore, al-
though the results of the CANTOS trial advances the hypoth-
esis that inflammation contributes to coronary artery
disease, routine use of canakinumab is not warranted be-
cause of its modest net clinical benefit and high cost.

A second trial aimed at testing the inflammatory hypoth-
esis of CAD compared methotrexate, which inhibits IL-6,
with placebo. The studywas stopped early because therewas
no evidence of a reduction in cardiovascular events with
methotrexate.221 Therefore, the data available to date sug-
gest that the inflammatory process driving atherosclerosis is
mediated by the IL-1 signaling pathways and not by IL-6
signaling.

Conclusion and Future Directions
The results of the COMPASS trial provide new insights into
the pathogenesis of atherothrombosis by highlighting the
importance of thrombin as a driver of recurrent ischemic
events. To best translate the findings into practice,
patients at highest risk for recurrent ischemic events
need to be identified. Patients with PAD, those with
polyvascular disease and high-risk CAD patients such as
those with diabetes mellitus, hypertension, or heart fail-
ure are likely to derive the greatest benefit from the
combination of low-dose rivaroxaban and aspirin. Still
to be determined is when and which ACS patients to
transition from DAPT to the combination of aspirin plus
rivaroxaban. Nonetheless, the COMPASS trial will change
treatment paradigms for atherothrombosis prevention in
CAD and PAD patients.

The major side effect of DPI is bleeding. As briefly dis-
cussed, current research is focused on development of safer
anticoagulants such as factor XI inhibitors.222,223 Additional
studies are needed to determine whether these next gener-
ation anticoagulants will provide a safer platform than
rivaroxaban for the addition of single or dual antiplatelet
therapies.

Finally, despite the promising results of the CANTOS trial,
the role of antiinflammatory agents for prevention of
cardiovascular events remains uncertain. More studies are
needed to confirm the importance of the IL-1 signaling
pathways in this process. To move forward, agents that are
more effective, safer, and less expensive than canakinumab
are needed. Until such agents are available, and more
studies are performed, low-dose rivaroxaban plus aspirin

will be the mainstay for the secondary prevention of
atherothrombosis.

Theme 5: Potential Areas for Investigation

• Early risk stratification including biomarkers and nonin-
vasive imaging (coronary CT/ MRI) before antithrombotic
Rx; availability of quicker acting simple-to-administer
drugs.

• Following ACS diagnosis, careful work-up is essential and
this should be organized in the most patient friendly
manner in close collaboration between GP and cardiolo-
gists. Thismay involve specialized GP’s and requires triage
of low versus high complexity patients.

• New clinical trials on the use of multibiomarker analysis
to improve early diagnostics of CVD, and to explore the
associated mechanisms and kinetics of biomarkers; inde-
pendent validation trials to evaluate the usefulness of
those biomarkers.

• Strategies for personalization of the duration of DAPT
need to be refined and potentially informed by biomark-
ers such as GDF-15.

• Improved strategies for preventing progression of athero-
sclerosis with due consideration of vascular inflamma-
tion, lipids, and thrombotic pathways and the effects that
different drugs have on these parameters.

• More effective strategies for reducing bleeding risk during
dual antithrombotic therapy are required, informed by
greater understanding of the mechanisms behind life-
threatening bleeding events.

• Determine whether the next generation anticoagulants,
including inhibitors of the FXII/FXI pathways, will provide
a safer platform than current DOACs for the addition of
single or dual antiplatelet therapies.

• Safer and less expensive agents than canakinumab are
needed to provide clinically meaningful antiinflammato-
ry therapy for preventing atherothrombosis. Similarly,
safer and ultimately less expensive antiplatelet and anti-
coagulant agents are needed.

Theme 6: Pathogenesis of Venous Thrombosis and Late
Consequences of Venous Thromboembolism

The Role of Leukocyte Populations in Venous Thrombosis
Immune cells perform key functions in venous thrombosis
including (1) initiation of blood clotting, (2) local inflamma-
tion, (3) tissue remodeling, and eventually (4) controlled clot
resolution. In addition to the cell types that trigger coagula-
tion (thrombocytes, monocytes, and neutrophils)224—and
possibly mast cells,225 other immune cell types that regulate
clot inflammation and degradation have been identified (NK
cells and T cells).226,227

T cells regulate the function of numerous cells inside and
outside the immune system; the nature and extent of their
recruitment and activation are crucial for the resolution or
persistence of inflammatory immune responses. A specific
subgroup of T cells, effector memory T cells, is recruited into
the thrombus and vascular wall of thrombotic veins, where
they are antigen-independently activated and delay the
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resolutionof thethrombusby theformationof interferon-γ.228

Migrated T cells become tissue resident, but the significance
and possible role of these and possibly-other tissue-resident
immune cells in venous thrombosis are unknown.

To study the cellular andmolecular basis andmechanisms
of venous thrombosis, different models have been used,
which differ widely in their triggering mechanisms (tissue
damage, stasis and stenosis, and hypercoagulable state.229

Consequently, the role of individual immune cell populations
in these models may differ (e.g., the type and extent of
neutrophil recruitment certainly varies with the amount of
tissue damage). Equally important are genetic differences
that affect individual cell populations but are often ignored
(e.g., the prominent difference in neutrophil activity be-
tween mouse BL/6 substrains).230

While the frequency of thromboses increases with age,231

age-related changes in the immune system are not well
covered in thrombosis research.

Experimental Insight into Postthrombotic Syndrome
Postthrombotic syndrome (PTS) is a syndrome occurring in
almost half of patients with DVT, characterized by long-
term morbidity and loss in quality of life. There is no
specific treatment available to prevent PTS or to diminish
its burden. The mainstay of medical therapy of DVT relies on
rapid and therapeutic anticoagulation, leg elevation in the
acute phase, and compression therapy. The high prevalence
of postthrombotic morbidity, its societal burden and the
associated reduction in health-related quality of life renders
this syndrome an important clinical conundrum to be
solved.

Elimination of the acute venous thrombotic occlusion
can be achieved with a combination of thrombolysis and
catheter guided clot removal, potentially reducing the
burden of PTS.232 However, a more recent large trial233

did not show any significant impact of catheter-guided
thrombolysis, as compared with standard treatment, on
PTS incidence although a reduction in PTS severity was
observed.234 A third trial in patients selected for ileo-
femoral vein thrombosis only also failed to show a clear
benefit of catheter-guided thrombolysis.235 Thus, the jury is
still out on thrombus removal to reduce PTS. Thrombolysis
and adjunctive stenting induces endothelial damage and
therefore enhancing peri-procedural anticoagulant therapy
might be necessary. Theoretically, the addition of a platelet
inhibitor like aspirin to anticoagulation, may offer benefit as
platelets also contribute to venous thrombogenesis.236–238

The increased bleeding risk of combined full dose anti-
coagulation and aspirin is a potential downside that needs
to be addressed.

DOAC-treated patients may have a reduced incidence of
PTS as compared with low-molecular-weight heparin
(LMWH)/VKA treatment,239–241 LMWH may however still
have the advantage of potentially inhibiting P-selectin me-
diated inflammation, and has some clinical precedent in
humans with PTS.242,243 One inference is that the more
consistent anticoagulation achieved with a DOAC may, in
general, be slightly more effective than VKA, with its inher-

ent variability, in general.244,245 Other potential targets for
therapeutic interventions aimed at reducing PTS are Il-6, P-
selectin and TLR-9. Administration of the P-selectin inhibitor
aptamer promoted iliac vein recanalization, preserved ve-
nous valve competence and reduced vessel wall fibrosis in a
baboon model of venous thrombosis.246 The use of statins
might provide benefit in patients with venous thrombosis
but so far, no prospective controlled trials aimed at PTS
patients alone have been undertaken (see ClinicalTrials.gov
Identifier: NCT02679664).

Alterations in interindividual fibrinolytic activity may
also impact thrombus resolution. Fibrinolytic enzymes also
have other effects, including macrophage infiltration in
thrombi (uPA dependent) and vessel wall changes including
collagen content and fibrosis, with PAI-1 and vitronectin as
cofactors in some of these actions.247 The effects of PAI-1 and
vitronectin may be mediated by effector molecules such as
metalloproteinase (MMP)-2, MMP-9, and TIMP-1, via molec-
ular cascades modifying matrix destruction, inactivation of
cytokines and shedding of cell surface molecules.248,249 A
proposedmechanism is that increased PAI-1 ultimately leads
to reduced reduces plasmin activity, thereby loweringMMP-
2/-9 activity, resulting in increased thrombus volume and
reduced vessel fibrosis. These divergent outcomes illustrate
the complexity of the system; hence upregulation of fibrino-
lytic stimuli like uPA may result in untoward consequences
and could explain why active fibrinolysis did not achieve
better results clinically. It is important not to develop drugs
that destabilize clots that otherwise would not (or not as
quickly) embolize. An ideal agent could be one that increases
the natural uPA expression in ECs, preferably utilizing spe-
cific receptors on local ECs in the microenvironment of the
clot.

Experimental evidence suggests that other ways of stim-
ulating thrombus resolution that may have therapeutic
potential include inhibition of FXI, P- and E-selectin, NETs,
TLR9, MMP-2 and -9, PAI-1, and Il-6.250 In addition, knowl-
edge of the biology of DVT resolution and the impact of
recurrent thrombosis on the vessel wall is still scarce. There
are clear differences invesselwall inflammatory responses to
a first as comparedwith repeated thrombotic occlusion, with
more fibrotic changes in the latter.251

In the vena cava ligationmodel inmice,monocytes are not
essential in thrombogenesis, however they are necessary for
thrombus resolution. Differentiated macrophages infiltrate
the thrombus and their secreted mediators augment plas-
minogen release.252 Ly6CLo monocyte/macrophages may be
important in pro-resolution activities and drive vein wall
healing.253 Monocyte phenotype is highly plastic and dictat-
ed by the local environment but it is uncertain if they can be
modified to polarize the monocytes/macrophages to a heal-
ing phenotype. Modulating the immune system generally
may entail unexpected, and potential harmful consequences
and should therefore be approached with a high degree of
caution, but local modulation of monocyte activity could
decrease off target effects. Moreover, phenotypic differences
betweenmurine and humanmonocytes should be taken into
account.

Thrombosis and Haemostasis Vol. 120 No. 4/2020

Thrombo-Inflammation in Cardiovascular Disease d’Alessandro et al. 555

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ite

it 
M

aa
st

ric
ht

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



In addition, lifestyle interventions such as weight reduc-
tion and physical exercise might reduce symptoms. Support-
ive therapy such as compression therapy is recommended as
it also reduces associated symptoms such as pain and edema.
Moreover, compression therapy may reduce PTS incidence if
there is adequate patient compliance.254

Pulmonary Embolism and Chronic Thrombo-Embolic
Hypertension: How to Improve Outcomes?
Published literature on the outcome after acute PE mostly
focuses on recurrent VTE, anticoagulation-associated bleed-
ing, occult cancer, arterial cardiovascular events, and overall
mortality.255 One at least equally important outcome has
been mostly overlooked: the post-PE syndrome.256 This
syndrome involves long-term functional limitations as a
direct consequence of the PE, including CTEPH, chronic
thromboembolic vascular disease, and any other PE-induced
changes of cardiac and/or pulmonary function as well as
deconditioning.257,258 The post-PE syndrome is associated
with a decreased quality of life, higher risk of depressive
disorders, unemployment, and increased utilization of
healthcare resources.

CTEPH is the most severe presentation of the post-PE
syndrome with poor outcome if not diagnosed in time.259 In
contrast, CTEPH may be cured after surgical removal of the
chronic clots.259 Notably, due to the nonspecific clinical
presentation, the delay in diagnosis of CTEPH after PE is
more than 1 year,260 resulting in more advanced disease
stage at diagnosis and higher mortality.261 Earlier CTEPH
diagnosis and improved patient outcomes can likely be
realized by interventions aimed at improving healthcare
utilization during follow-up of acute PE, closer attention to
signs of CTEPH on standard CT scans performed to diagnose
PE and routine evaluation of the presence of CTEPH in the
course of PE in all patients.262–264

For the less severe presentations of the post-PE syndrome,
application of cardiopulmonary rehabilitationprogramsmay
be of great benefit, achieving full recovery in most patients.
Newly developed (patient or physician reported) outcome
measures should allow comparison of the effects of different
treatments, for example reperfusion therapies, on long-term
functional outcome.157

Theme 6: Potential Areas for Investigation

• Most current venous thrombosismodels are best suited to
study initial clotting. This focus, however, ignores impor-
tant aspects of the disease, in particular chronic syn-
dromes and side effects. There is thus a need to develop
experimental methods for repetitive thrombogenesis and
models for chronic venous insufficiency (CVI), PTS, and
CTEPH.

• The Vena Cava ligature or damage model is very invasive.
Further standardization of the procedure and its effects on
the immune system should be examined (e.g., by sham
operation). There is a need for a less invasivemodel that is
easy to monitor and does not require the administration
of painkillers or narcotics.

• There is a knowledge gap on the role of immune cells and
their interaction with tissue cells during thrombosis and
subsequent tissue remodeling which should be remedied.
Numerous immune cell types whose participation and
significance for inflammatory reactions are known, but
others such as dendritic cells, ILCs, γδ T-cells and B-cells,
have not yet been considered and should be
investigated.219

• Optimization of anticoagulant treatment, especially in the
acute phase of venous thrombosis, concerning the inten-
sity, type, or combination of different anticoagulants and
pleiotropy of LMWH and/or DOACs. Investigate the addi-
tion of antiplatelet therapy (mainly in the acute phase,
such as P2Y12 inhibitors) and addition of direct p-selectin
inhibition (mainly in the acute phase) to determine effect
on PTS.

• Clot structure may give insights into interindividual het-
erogeneity toward etiology and thrombus resolution.
Consider a thrombus biopsy study to focus and direct
this work. Study the contribution of valvular function to
the phenotype and PTS severity. Improve thrombolytic
and stenting strategies to reduce endothelial damage, via
timing and dosage assessment.

• The role of thefibrinolytic system (upregulation of uPA, in
particular in ECs) in thrombus resolution and vessel wall
remodeling deserves further study; including on vehicles
(nanoparticles) that carry plasminogen for activation at
thrombus site. Identify mechanisms to enhance the local
endogenous fibrinolytic system.

• Immune modulation: monocyte manipulation toward a
“pro-healing” monocyte phenotype, to accelerate throm-
bus resolution and vesselwall healing from inflammation,
in a time specific manner. Use of matrix targeted nano-
particles to direct certain inhibitors to problematic
(fibrotic) regions. Target the thrombus specifically to
induce thrombus resolution (without having to use sys-
temic anticoagulation). Selective inhibition of pro inflam-
matory cytokines (e.g., IL-6 and IL-1)with timedependent
assessment.

• Patient and/or physician reported functional outcome
measures that also allow comparison of the effects of
different treatments in patients with VTE, for example,
reperfusion therapies, on long-term functional outcome
are needed.

Conclusion

This third consensus conference assembled an interactive
group of young and seasoned investigators in the broad area
of “thrombo-inflammation” related cardiovascular disor-
ders. While this document summarizes the presentations
and discussions, it is not comprehensive in the sense that
certain elements that could have been discussed, like the
potential value of genetic multimarker testing for risk
stratification, were not included simply because relevant
experts in such areas were not present at this meeting. At
the same time, the sum of the state-of-the-art presentations
provides a foundation for further research in the
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mechanisms of thrombo-inflammation and all potential
clinical consequences.

What is known about this topic?

• Thrombo-inflammation is a driver of CVD
• Key players have been identified: endothelium, blood

coagulation, and inflammation
• Details about molecular and cellular mechanisms

comprising thrombo-inflammation emerge

What does this paper add?

• This symposium paper summarizes new insights into
details of several mechanisms that comprise
“thrombo-inflammation.”

• Inflammatory challenges of the endothelium (cells,
EVs, and inflammatory cells) alter the barrier function
and allow procoagulant reactions to start.

• Thromboinflammation is a driver of atherogenesis and
atherothrombosis, but similarly has impact on venous
thromboembolism and its late complications.
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